
Chapter 5

Implicit functions and ordinary
differential equations

Implicit function theorem

Say we have a system of m algebraic equations on n variables

F1(x1, . . . , xn) = 0

...
Fm(x1, . . . , xn) = 0

In the case of linear equations, if n = m, basic linear algebra tells us that the
solvability depends on the degeneracy of the coefficient matrix, whereas if n < m,
the degeneracy of a coefficient sub-matrix determines the parametrizability of the
space solutions.
In the nonlinear case, one simply "linearizes" the problem around a point and
obtains a similar statement locally. Consider a function

F : Rn × Rm︸ ︷︷ ︸
Rn+m

→ Rm, (x, y) 7→ F (x, y)

and think of level sets as solutions to a system of algebraic equations, i.e.

F (x, y) = 0 ⇐⇒


F1(x1, . . . , xn, y1, . . . , ym) = 0

...
Fm(x1, . . . , xn, y1, . . . , ym) = 0

where we want to solve for the (y1, . . . , ym) variables in terms of the extra
(x1, . . . , xn) parameters.

Theorem 5.1 (Implicite function theorem). Let Ω ⊂ Rn+m be open, F ∈
C1(Ω,Rm), and

N
.
= {(x, y) ∈ Ω | F (x, y) = 0} .

33



5. Implicit functions and ordinary differential equations 34

If for (a, b) ∈ N it holds that the matrix:

DyF |(a,b) =


∂F1
∂y1

. . . ∂F1
∂ym

...
...

∂Fm
∂y1

. . . ∂Fm
∂ym

 (a, b)

is invertible, then there exists open neighbourhoods Ux ⊂ Rn of a and Uy ∈ Rm
of b with Ux × Uy ⊂ Ω and a function f ∈ C1(Ux, Uy) such that

N ∩ (Ux × Uy) = graph(f) ,

i.e
∀(x, y) ∈ Ux × Uy : F (x, y) = 0 ⇔ f(x) = y .

In other words, one can solve F (x, y) = 0 locally for y. Moreover,

Df |x = −
(
DyF |(x,g(x))

)−1 ·DxF |(x,f(x)) .

Definition 5.2.
Let Ω,Ω′ ⊂ Rn be open. A map f ∈ C1(Ω,Ω′) is called a diffeomorphism, if it is
bijective and also the inverse f−1 ∈ C1(Ω′,Ω).

Proposition 5.3. A map f : Rn ⊃ Ω → Ω′ ⊂ Rn is a diffeomorphism if and
only if its differential Df |x : Rn → Rn is an isomorphism for every x ∈ Ω.

Theorem 5.4 (Inverse function theorem). Let Ω ⊂ Rn be open and f ∈ C1(Ω,Rn).
If for x ∈ Ω it holds that Df |x is invertible then there exists an open neighbour-
hood U of x such that f |U : U → f(U) ⊂ Rn is a diffeomorphism.

Definition 5.5 (Local extremum under constraint).
Let Ω ⊂ Rn be open and f, h ∈ C1(Ω,R). Let N .

= {x ∈ Ω | h(x) = 0} and
a ∈ N . We say that f has a local extremum (maximum or minimum) at the point
a under the constraint h = 0 if f |N has a local extremum at a.

Theorem 5.6 (Necessary condition for local extremum under constraint). Let
Ω, f, h,N as above. If a ∈ N is a regular point of h (i.e. Dh|a ̸= 0) and a local
extremum of f under the constraint h = 0, then there exists λ ∈ R such that:

Df |a = λDh|a (5.1)

with λ being the Lagrange parameter.

Theorem 5.7 (Sufficient condition for local extremum under constraint). Let
Ω ⊂ Rn be open, f, h ∈ C2(Ω,R). Let for a ∈ N the necessary condition Eq. (5.1)
be satisfied, i.e. there exists λ ∈ R such that DF |a

.
= D(f − λh)|a = 0, then:

1. If D2F |a(v, v) > 0 for all v ∈ Rn\{0} such that Dh|av = 0, then f has a
strict local minimum at a under the constraint h = 0.
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2. If D2F |a(v, v) < 0 for all v ∈ Rn\{0} such that Dh|a(v) = 0, then f has a
strict local maximum at a under the constraint h = 0.

3. If D2F |a is indefinite in the subspace spanned by vectors satisfying Dh|a(v) =
0, then f has no local extremum at a.

Remark 5.8. If h : Ω ⊂ Rn → Rk, then N = {h = 0} is a n − k-dimensional
submanifold. In this case, the necessary condition for extremum under constraint
N becomes

Df |a ∈ span{Dh1|a, Dh2|a, . . . , Dhk|a}
⇔ ∃λ ∈ Rk : D(f − λ · h)|a = 0 (i.e. Df |a = λ1Dh1|a + . . .+ λkDhk|a) .

Ordinary differential equations

Definition 5.9 (Ordinary differential equation).
Let I ⊂ R be an open interval containing 0 and let m ∈ N. An expression of the
form

F
(
t, γ(t), γ′(t), γ′′(t), . . . , γm(t)

)
= 0

is called an ODE of order m, where

F : I × R× R× . . .× R → R︸ ︷︷ ︸
m-times

is given and γ ∈ Cm(I,R) is the unknown.

1. If F does not depend on t, the ODE is called autonomous.

2. If the expression is written like

γ(m)(t) = f
(
t, γ(t), γ′′(t), . . . , γ(m−1)(t)

)
it is called an explicit ODE.

3. If the expression can be writte like

γ(m)(t) =

m−1∑
i=1

ai(t)γ
(i) + r(t)

it is called linear , and r(t) is called the source term. If the source term is
equal to zero we call it homogeneous.
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Definition 5.10 (System of ODEs).
Let I ⊂ R be an open interval containing 0, let Ω ⊂ Rn open and let m ∈ N. An
expression of the form

F
(
t, γ(t), γ′(t), γ′′(t), . . . , γm(t)

)
= 0

is called an system of ODEs of order m and dimension n, where

F : I × Ω× Rn × . . .× Rn︸ ︷︷ ︸
m-times

→ Rn

is given and γ ∈ Cm(I,R) is the unknown. All the nomenclature above translates
easily to systems of ODEs.

Remark 5.11. Non-autonomous first-order and autonomous ODEs of any order
all reduce to autonomous first-order ODEs.

Definition 5.12 (Integral curves).
Let Ω ⊂ Rn open, v ∈ C(Ω,Rn) a vector field and I ⊂ R an open interval
containing 0. A solution γ ∈ C1(I,Ω) to the initial value problem{

γ′(t) = v(γ(t))

γ(0) = x0

is called an integral curve of v through x0 ∈ Ω.

Definition 5.13 (Local and global Lipschitz condition).
Let U ⊂ R× Rn and v ∈ C(U,Rn) be a time-dependent vector field.

1. We say that v satisfies a Lipschitz condition, if there exists L ≥ 0 such that

∀(t, x), (t, y) ∈ U : ∥v(t, x)− v(t, y)∥ ≤ L∥x− y∥

2. We say that v satisfies a local Lipschitz condition, if every (t, x) ∈ U admits
a neighbourhood V ⊂ U such that v|V satisfies a Lipschitz condition.

Theorem 5.14 (Picard-Lindelöf). Let U ⊂ R × Rn be a domain and let v ∈
C(U,Rn) satisfy a local Lipschitz condition.

1. Local existence: For any (t0, x0) ∈ U there exists δ > 0 and a curve γ ∈
C1((t0 − δ, t0 + δ),Rn) that is a solution of γ′ = v(t, γ) with initial datum
γ(t0) = x0.

2. Uniqueness: If J ⊂ R is an interval with t0 ∈ J and γ̃ : J → Rn solves
γ′ = v(t, γ) with γ̃(t0) = x0, then

γ̃(t) = γ(t) ∀t ∈ J ∩ (t0 − δ, t0 + δ) .
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Definition 5.15 (Maximal solution).
Let v ∈ C(J ×Ω,Rn) satisfy a local Lipschitz condition. A solution γ : I → Ω of
γ′ = v(t, γ) is called maximal solution, if the following holds: If I ⊂ Ĩ ⊂ J and
γ̃ : Ĩ → Ω is a solution of γ′ = v(t, x) with γ̃|I = γ, then Ĩ = I.

Corollary 5.16. Under the conditions of the Picard-Lindelöf-theorem, there ex-
ists for any initial value a unique maximal solution.

Theorem 5.17. Let J = (j−, j+) ⊂ R, Ω ⊂ Rn a domain, and v ∈ C(J ×Ω,Rn)
satisfy a local Lipschitz condition. Let γ : (t−(t0, x0), t+(t0, x0)) → Ω be the
unique maximal solution of γ′ = v(t, x) for the initial value (t0, x0) ∈ J × Ω. If
t+(t0, x0) < j+, then for any compact K ⊂ Ω there exists 0 < τK < t+(t0, x0)
such that

γ(t) /∈ K ∀t ∈ (τK , t+(t0, x0)) .

Definition 5.18.
A locally Lipschitz vector field v ∈ C(Ω,Rn) is complete, if there exists a global
solution γx0 ∈ C1(R,Ω) of γ′ = v(γ) with γx0(0) = x0 for any initial value x0 ∈ Ω.
The associated flow is:

Φ : R× Ω → Ω, (t, x) 7→ Φ(t, x) = γx(t)

and
Φt : Ω → Ω, x 7→ Φt(x) = Φ(t, x)

is called the flow map at time t. It satisfies

Φt ◦ Φs = Φt+s ∀t, s ∈ R

i.e.
R → Bij(Ω → Ω), t 7→ Φt

is a groups action of (R,+) on the set Ω.

Theorem 5.19. If v satisfies a local Lipschitz condition and is complete, then
the corresponding flow maps Φt : Ω → Ω are continuous. If v ∈ C1, then the flow
maps Φt : Ω → Ω are also C1.

Linear ordinary differential equations

Definition 5.20 (Non-autonomous homogeneous linear system).
Let J ⊂ R be open interval, A : J → L(Rn,Rn) continuous and γ : J → Rn.

1. The ODE
γ′ = A(t) · γ (v(γ) = A(t) · γ)

is called a non-autonomous, homogeneous, linear system.
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2. If b : J → Rn is continuous, then

γ′ = A(t) · γ + b(t)

is called a non-autonomous, inhomogeneous, linear ODE.

Example 5.21. In the homogeneous autonomous case

γ′ = Aγ

the unique global solution with initial datum x0 ∈ Rn is

γ(t) = eAtx0

where eAt =
∞∑
n=0

tnAn

n! .

Theorem 5.22. J ⊂ R open, A : J → L(Rn,Rn) and b : J → Rn continuous.
Then for very t0 ∈ J and x0 ∈ Rn there exists a unique maximal solution γ :
J → Rn of the ODE

γ′ = A(t)γ + b(t), with γ(t0) = x0 .

Lemma 5.23 (Grönwall). Let a < b and u : [a, b] → [0,∞) continuous. Assume
∃L,C ≥ 0 such that for t ∈ [a, b]:

u(t) ≤ C + L

t∫
a

u(s) ds .

Then
u(t) ≤ CeL(t−a) .

Definition 5.24 (The propagator of a non-autonomous, homogeneous linear
system).
Let J ⊂ R open and A : J → L(Rn,Rn) continuous. For fixed t0 ∈ J we define

the maps
Φt : Rn → Rn, x0 7→ γx0(t) ∀t ∈ J (5.2)

for each t ∈ J , where γx0 : J → Rn the solution to γ′ = A · γ with initial data
γx0(t0) = x0 and call it the flow map or the propagator .

Theorem 5.25. Φt : Rn → Rn from Eq. (5.2) is a linear isomorphism.

We hence get that the solutions {γ ∈ C1(J,Rn) | γ′ = A(t)γ} form a n-
dimensional subspace of C1(J,Rn).



5. Implicit functions and ordinary differential equations 39

Theorem 5.26 (Variation of constants). Let Φt : Rn → Rn be the propagator of
a homogeneous linear system γ′ = A(t)γ and b : J → Rn continuous. Then the
solution of the inhomogeneous equation:

γ′ = A(t)γ + b(t) with γ(t0) = x0

is

γ(t) = Φt

(
x0 +

t∫
t0

Φ−1s b(s) ds
)
.

This approach is called the variation of constants.
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Exercises

1. (Proposition 5.3) Show that a map f : Rn ⊃ Ω → Ω′ ⊂ Rn is a diffeomor-
phism if and only if its differential Df |x : Rn → Rn is an isomorphism for every
x ∈ Ω.

2. Determine and draw some integral curves for the vector fields

v :R2 → R2, (x, y) 7→ v(x, y) =

(
−x
y

)
,

w :R2 → R2, (x, y) 7→ w(x, y) =

(
x
y

)
.

3. Show that every autonomous ODE of order m can be reduced to a system of
m first order autonomous ODEs.

4. Give an example of a C1 function that is bijective but not a diffeomorphism.

5. Classify the following differential equations:

∂2x

∂t2
= mF

adsf

∆u+ f = 0 Poisson equation

∂u

∂t
−

n∑
i=1

bi(x)ui(x) = 0 transport equation

∂2u

∂t2
= c∆u Wave equation
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